

info@mindfiresolutions.com Page 1 of 11

White Paper: Testing a Software Port

Testing a Software Port

Mindfire Solutions
www.mindfiresolutions.com

August 29, 2001

Abstract:

While justifying the need of a separate testing strategy for ported application, this paper
discusses testing methodology for porting projects. Portions of this document talk about
the stage-wise testing approach and then elaborate each one to create a substantial and
comprehensive process. Best practices gained from practical experiences; make this
paper a good guide for testing software port

SOFTWARE MIGRATION: GROWING OLD WITH MINDFIRE 2

WHY IS A TESTING PORT DIFFERENT?... 2

PHASES FOR TESTING A PORT .. 2

SUMMARIZE MIGRATION FEASIBILITY ... 4

PREPARATORY STEPS ... 5

• UNDERSTANDING INITIAL APPLICATION .. 5
• UNDERSTAND ARCHITECTURE AND IDENTIFY SUB-SYSTEMS 5
• STUDY INITIAL TEST PLAN (IF AVAILABLE)... 6

TEST STRATEGY.. 6

• PARTITIONING THE PORT .. 6
• CREATE TEST PLAN .. 9
• CREATE TEST CASES .. 9
• CREATE A “TRICK AREA” LIST .. 9
• CONFIGURE TEST ENVIRONMENT .. 10

EXECUTE TESTS, EVALUATE AND COMPLETE .. 10

• EXECUTE TESTS ... 10
• TRACK RESULTS... 10

PRE-RELEASE TESTING... 11

CONCLUSION ... 11

info@mindfiresolutions.com Page 2 of 11

White Paper: Testing a Software Port

Software Migration: Growing old with Mindfire

This paper distillates some of our best practices in testing, from our experience in various
porting projects till date. It is intended to serve as a guide to planning and conducting a
successful test for porting projects.

Why is a testing port different?

A common assumption in porting projects is – Developing and testing a ported
application is simpler than the regular projects as the specifications are clear, UI and
other visual areas are available to be copied, architecture is already thought of in the
original application, functionality requirements are pre-defined, test cases may be reused
and the list of reasons will go on. But in practice, it is not so simple. It’s true that a lot of
technical work can be avoided, but at the same time, many decisional factors pose
stronger problems. Here is a list of the common conflicts we have experienced and these
are quite possible to occur if you are testing a porting project.

The confusion in testing ports arises out of unclear “desired behavior”.

Known bugs: Many a times, a known bug in the original platform is easier to fix in the
target platform as a part of the porting effort. It’s difficult to decide whether or not to go
for a fix. The results will definitely make the application inconsistent over both the
platforms. At the same time, leaving a repairable bug in the system would not look
correct.

User Interface guidelines on different platforms: Testing will compare the actual
behavior against the desired. But at times, it’s difficult to identify what could be a desired
behavior when it’s driven by many other parameters. For example, in Windows buttons
will appear as rectangular but the same controls will appear as round-edged rectangles on
Mac. Hence it’s difficult to predict whether the desired behavior should be having the
same look for the controls or to go by the conventions of the target platform. In order to
restore consistency, one has to use custom buttons for Mac, but this will create an
application that does not maintain the Mac’s look-and-feel.

Features handled by the OS: Many elements in the application are directly handled by
the OS and hence behave differently across platforms. E.g. on Windows, every open
window has application specific menu bar attached to it. But on Mac, a single menu is
displayed for all open applications and gets dynamically updated according to the
window in focus.

Phases for Testing a Port

Testing a port is just like testing any other software project, with a few extra things to do.
The following figure outlines the phases we follow, at Mindfire Solutions.

info@mindfiresolutions.com Page 3 of 11

White Paper: Testing a Software Port

Figure 1: Phases for Testing a Port

IV

III

II

I Summarize Migration Feasibility

Preparatory Steps

Test Strategy

Execute tests, evaluate and complete

1. Understand objective
2. Identify benefits
3. Assess risks
4. Identify target platform’s restrictions

1. Understanding of application on original platform
2. Understand architecture and identify sub-systems
3. Study original test plan (if available)
4. Identify all hardware connections, resource

dependability and s/w interoperability

1. Execute tests
2. Track results

1. Partitioning the port
a. Identify areas to behave unaltered after the port
b. Identify areas of deviation and their desired

behavior
c. Areas to be added/removed

2. Create Test plan
3. Create test cases based on the original ones (if available)
4. Configure test environment (original and target)

Pre-release testing

1. Ensure software consistency across platforms
2. Ensure that Performance, s/w and h/w

interoperability is maintained across porting
3. Double-check for the trick areas!

V

info@mindfiresolutions.com Page 4 of 11

White Paper: Testing a Software Port

Summarize Migration Feasibility

Migration feasibility assessment is not a part of the testing activities. The client,
management and technical group perform feasibility studies before the project is
accepted. But involvement of testers in this stage has proven beneficial for us.

Our feasibility studies involve a lot of interaction with the client and taking their input in
terms of business objectives, target user base, support resources for the new migration
and compatibility with the existing infrastructure. Our porting analyst will anticipate the
issues and assess risks before going ahead with the development work. In general, the
most potential stumbling blocks – structural, functional and restrictions on the target
platform – are identified ahead of time making it easy for our clients, developers and
testers to resolve critical issues.

The QA team at Mindfire not only helps the analyst (primarily a senior programmer)
identify and analyze risks, but also prepare to resolve the quality-oriented issues that may
crop up during testing the application with the anticipated restrictions. Involvement of the
QA from this initial stage of feasibility assessment prepares the test team for the
following issues.

I. Understand the migration objective so that testing can be designed in the similar

perspective. Whether the porting is intended to create a market presence or
acquiring more user base etc. may prove vital while planning for testing.

II. Review the computing infrastructure and design the test lab accordingly. Mock

setups are done in order to ensure that the migrated application works well with the
existing infrastructure.

III. Study the user base in order to simulate different platform, hardware/software/

network combinations to meet compatibility requirements.

IV. Assess support requirement for the migrated application. This is important in order
to test adequacy of system documentation, on-line help and trouble-shooting issues.

V. Identify the target platform’s restrictions and variations. Few behaviors will be

unavoidable because of the platform’s specific design and structure. But care must
be taken to preserve system integrity. Any deviations will be anticipated and the QA
team specifies acceptable alternatives for the same.

VI. Think about interoperability issues. Key to a successful deployment of the migrated

application is to ensure its ability to demonstrate that those who work on the old
platform as well as the new platform can coexist in the network and exchange
common sharable data. It is also important to assess the difficulty of migrating
existing data to the new platform.

info@mindfiresolutions.com Page 5 of 11

White Paper: Testing a Software Port

VII. Most important of all is to assess performance; stability and reliability of the
application on the target platform should meet the existing benchmark.

Preparatory Steps

• Understanding Initial Application

The purpose of understanding the initial application is:

• Identify basic/core functionality
• Familiarize with user interface and operation
• Identify external dependencies
• Detailed functionality
• Foundation to develop user session scenarios

To achieve these objectives, the testers must have a thorough knowledge of the original
application functionality.

• Run the application on original platform till the level of understanding
required is gained

• Review Help and other documentation
• Note down broad level functionalities
• Make informal notes about likely application port-incompatibility
• Run complete sessions as user

• Understand architecture and identify sub-systems
Go through the architecture design document for the existing platform. Find from the
development team if there are any architecture modifications required for porting.

The major sub-systems of the program need to be identified and the way they interact
with each other should be understood. Also identify major areas in the application to be
tested. E.g. for a typical desktop application, the major areas to be tested would look like
the following.

• App-specific functional sub-systems
• User interface

• Windows and frames
• Buttons/labels and other controls
• Complex UI elements
• Graphics

• File/database store
• External software/hardware dependencies
• Help
• Performance
• Stability

info@mindfiresolutions.com Page 6 of 11

White Paper: Testing a Software Port

• Study initial test plan (if available)

If test cases for the original application are available, testers should read the same in
order to get inputs for designing test cases for the target platform. Some of these test
cases may be reused as it is. Some will need modification. There may be needs for
designing fresh test cases for some features and areas as the old ones just won’t fit the
requirement. Testers also need to know the known bugs in the existing platform.

Testers don’t write test cases during this stage. Actual test cases are prepared in the next
stage. All they need to do is developing a good understanding of the available material in
order to prepare the list of --

- Re-usable test cases
- Tests for modification
- Tests to be omitted
- Tests to be re-written

Test Strategy

Before starting with the initial preparations for testing, the scope of testing needs to be
finalized. Deciding the scope depends on various factors like resources available, time
allocated for testing and customer’s primary requirements. The following points are
considered while finalizing the scope.

• Should testing just ensure that the applications could be installed and launched
properly? Or should it check further for specific functionality and
performance?

• Should testing extend to thorough investigation of any problems? Or does it
suffice just to make note of them and move on?

• While checking dependencies and interoperability features, do we test all the
applications running on the original platform? Or should we focus only on the
top priority applications?

Identifying the scope will help the test team focus in the correct direction and tracking
progress.

• Partitioning the Port

Partitioning the port will primarily mean breaking down the broad areas in the application
to smaller features and organizing them under 4 major sections such as -- what will be
dropped, what will be added, what will remain same and what will change

What will be dropped: This section would list all the features in the original application
that should be removed after porting (for various reasons, most commonly absence of
support on the target platform).

info@mindfiresolutions.com Page 7 of 11

White Paper: Testing a Software Port

What will be added: List out the extra features to be implemented in the target platform.
This may be due to improving the program by adding few small but new features. Also
alternative features as a solution (work-around) to impossible issues are included in here.

What will remain same: Identify the features/components to behave unaltered after the
port. All the features that should look and function like in the original application should
be listed here.

What will change: Identify areas of deviation and project their alternative behavior.

Sometimes it’s a conscious decision to remove un-necessary and inferior features in the
existing application. Similarly few features may be added to improve the application.
Also few issues seem to be difficult, impossible and defect triggers because of the target
platform’s restrictions, for which alternative behavior should be determined on the target
platform. All features should be recorded in a checklist under the 4 sections mentioned
above.

The following figure displays a sample partitioning exercise (in the form of a simple
checklist) for a specific project.

info@mindfiresolutions.com Page 8 of 11

White Paper: Testing a Software Port

Figure 2: Partition Checklist for a sample port from Windows to Mac

Partition Check-List
Sub-systems Individual

Areas/Features
Drop Add Same Change Comments

Application
Menu

 •

In Mac a
common
menu bar is
shared across
applications
and changes
dynamically
as user
switches from
one to
another.

“About”

 •

According to
Mac
conventions,
it should
appear under
Apple menu.

External to
the

Application

Multiple
Document
Interface (MDI)

•
Is not
supported on
Mac.

Graphical
buttons for
Application
toolbar

 •

Client’s
request

User
Interface

Internal to
the

Application Encyclopedia
View •

Specifying
species color
and icons

 •

Macros

•

Not required
from this
version
onwards.

Lab File
Creation

Functionality

Test Mode

info@mindfiresolutions.com Page 9 of 11

White Paper: Testing a Software Port

• Create Test Plan

Test plan creation follows the same steps and techniques as in normal testing. However,
specific input from the previous steps drives the plan.

• Create Test Cases

Functional test cases should be designed based on the prior activities of understanding the
original application and partitioning areas. Testers are clear by now as to what
functionalities should they check for and what to omit. Addition of new functionality
means reworking the code, which makes it a defect prone area. Test cases should be
designed in order to focus more on code areas being altered. The following types of test
cases may be considered for development.

• Functional test cases
• Regression test cases
• User-interface test cases – Testing the UI design and consistency, considering

User Interface guidelines of the platform ported to
• “Scenario-based” test cases (with pre-defined parameters and values)
• “User session” test cases – These will be simulation of user activities across a

complete session. These will generally include all user activities from the time
application is started till it’s closed.

Some applications may have the original test cases available. Those can serve as an input
to creating the tests for target platform. The reusable test cases are picked up. Any
known bug list should be taken into records.

• Create a “Trick Area” list

A “Trick Area” list identifies areas that may look like weak links and bug-prone. Testers
may anticipate such areas based on prior experience of similar porting projects. A good
understanding of both platforms also helps in isolating areas that may cause cross-
platform problems. Test execution for such areas should be rigorous.

Another way to find trick areas is to interact with the developers or sit in their meetings
and pick up issues that they find difficult, confusing or hazardous. We have found the
following method suitable for catching these pitfalls:

• Sit in on developer meetings/discussions
• Take notes on issues/fights/stumbling blocks
• If the team discusses anything for more than 10 minutes, investigate for

specific issues
• Anything across 2 meetings, definite red flag
• The fundamental premise is: if they’re finding it difficult, they’ll probably

stumble on it

info@mindfiresolutions.com Page 10 of 11

White Paper: Testing a Software Port

• Configure Test Environment

A test environment would mean installing the original platform as well as the target
platform. All hardware and software dependencies should also be configured. In order to
simulate wide variety of possibilities, a good combination of the above is required.
Ideally the testers should have the application running on the original and target platform
nearby, preferably on the same desk. This helps in quick referencing and increases test
efficiency.

The following issues in the test environments are a must-check.

• Configure servers and client machines.
• Configure the original and target operating systems.
• Identify all hardware dependencies (external peripherals) like printer, scanner,

storage media, drives etc
• List all primary software dependencies (External software that the application

may use at some point of time e.g. a mail client or a word processor)
• List the secondary software dependencies (External software that may be

found on the user’s machine but not shared with the original application. It’s
recommended to pick up some frequently used software)

• Keep clean machines
• Databases or other data sources should be configured.

Execute tests, evaluate and complete

While testing is in progress, one needs to keep a tight rein on activities in the lab and the
execution of the testing plan. There are several strategies that will serve to keep the test
plan on track.

• Execute Tests

• Check that test cases are executed according to the test plan and schedule.
• Perform regression, stability and performance testing.
• Check that consistency of look and behavior of the application is preserved

while porting.
• Stress on test cases built for Trick Areas, as they posses more possibility of

finding defects.

• Track Results

• Coordinate the efforts of the testers with the stated objectives, ensuring that they
test all necessary components to satisfy the testing criteria.

• Decide early about a systematic bug management procedure and implement the
same. Checks should be conducted to ensure that developers and testers adhere to
it for entering open bugs as well as fix and close repaired ones. You may use a
bug-tracking tool or a simple spread sheet for this purpose. The motive should be
to decide upon a system and implement it.

info@mindfiresolutions.com Page 11 of 11

White Paper: Testing a Software Port

 *** At mindfire, we use our in-house bug management system, which takes care of bug tracking,
bug distribution and reporting system.

• Coordinate and standardize documentation of the test results. Bugs should be
entered in a definite format with adequate information about the bug behavior and
reproducing methods.

• Decide early about tester-developer communication protocol.
• Compile reports while testing being conducted. Reports help building awareness

among testers and developers about the progress of the application.

Pre-release Testing

This is a high-stress and exhausting phase of testing. Issues that are critical to porting
projects are crosschecked in this phase. This includes a last minute consistency checking,
performance on the target platform and software/hardware interoperability. The “Trick-
Area” list prepared before should be reviewed again.

Conclusion

Testing a ported application needs a paradigm shift from conventional testing strategies
in order to adequately address the radically new needs represented during a porting
endeavor. The new testing process should be geared towards handling critical issues with
more up-front design, performance testing and ongoing integrity testing in order to reveal
migration bottlenecks. This paper aims to help test teams intuit the possible porting
criticalities and plan to test more efficiently.

Mindfire Solutions is an offshore software services company in India. Mindfire possesses
expertise in multiple platforms, and has built a strong track record of delivery. Mindfire
passionately believes in the power of porting and its many advantages for software
product companies.

We have developed specific QA/testing techniques to test ports efficiently and make
porting a risk-free exercise. We offer specialized QA/testing services for your porting
projects. For porting projects that our development team executes, the same high level of
Quality Assurance is mandatory.

If you want to explore the potential of porting and our QA/testing services, please drop us
an email at info@mindfiresolutions.com. We will be glad to help you.

To know more about Mindfire Solutions, please visit us on www.mindfiresolutions.com

